Multi-racial facial recognition system provides more accurate results


© ING Group 2016 - The new Rembrandt

A multi-racial facial recognition system delivers more accurate results than those typically used today, a study published in Pattern Recognition journal has revealed.

The University of Surrey has developed a 3D morphing face model that has ‘learned’ from different racial faces and can better identify people in 2D pictures – even if a person’s appearance is compromised by their pose, expression, lighting or poor image resolution.

Many facial recognition systems fit 3D models to 2D faces found in pictures. However, most systems use the same model for different races and ignore inherent differences. The team from Surrey’s Centre for Vision, Speech and Signal Processing (CVSSP) found that the use of multi-racial 3D face models improves accuracy when trying to recognise people. It also found that the team’s aging effect technology – which is used to identify individuals after a long period of time has passed – is more precise when you use a model that is taught to learn different races.

Lead author of the paper Dr Zhenhua Feng from CVSSP said: “It’s safe to say that facial recognition technology is slowly becoming more prevalent in our daily lives, so for people to trust this technology, we need to make sure it’s as accurate as possible. We have found that our model that understands black, white and Asian faces is far more accurate at recognising 2D faces than the typical all-in-one models used today.”

Dr Feng, who recently won a European Biometric Industry Award for his work around facial landmark localisation, is part of a team at CVSSP that is working on a £6m project for the Engineering and Physical Sciences Research Council to make facial recognition ubiquitous across the country.

Professor Josef Kittler, Distinguished Professor at the University of Surrey and founder of CVSSP, said: “We believe that facial recognition technology will be a force for good. It will help us protect our possessions, provide better security for our data and keep us safe from harm. However, the matter of accuracy is something we all have to be mindful of and that is what we are working on improving at CVSSP.

“Dr Feng’s project and the wider work we are doing at the Centre is focused on improving the accuracy of facial recognition technology, even in extreme cases where the resolution of the corresponding image is compromised, or in cases where people may try to trick a system.”

this content is brought to you free of charge through the generous support of 

Better Connected Live 2018

a day of action focusing on improving customer service in the public sector


Back to homepage